DISA: A Dual Inexact Splitting Algorithm for Distributed Convex Composite Optimization

5 Sep 2022  ·  Luyao Guo, Xinli Shi, Shaofu Yang, Jinde Cao ·

In this paper, we propose a novel Dual Inexact Splitting Algorithm (DISA) for distributed convex composite optimization problems, where the local loss function consists of a smooth term and a possibly nonsmooth term composed with a linear mapping. DISA, for the first time, eliminates the dependence of the convergent step-size range on the Euclidean norm of the linear mapping, while inheriting the advantages of the classic Primal-Dual Proximal Splitting Algorithm (PD-PSA): simple structure and easy implementation. This indicates that DISA can be executed without prior knowledge of the norm, and tiny step-sizes can be avoided when the norm is large. Additionally, we prove sublinear and linear convergence rates of DISA under general convexity and metric subregularity, respectively. Moreover, we provide a variant of DISA with approximate proximal mapping and prove its global convergence and sublinear convergence rate. Numerical experiments corroborate our theoretical analyses and demonstrate a significant acceleration of DISA compared to existing PD-PSAs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here