Discretization based Solutions for Secure Machine Learning against Adversarial Attacks

8 Feb 2019  ·  Priyadarshini Panda, Indranil Chakraborty, Kaushik Roy ·

Adversarial examples are perturbed inputs that are designed (from a deep learning network's (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the 'space' in which adversarial examples exist. Guided by this intuition, we demonstrate that discretization greatly improves the robustness of DLNs against adversarial attacks. Specifically, discretizing the input space (or allowed pixel levels from 256 values or 8-bit to 4 values or 2-bit) extensively improves the adversarial robustness of DLNs for a substantial range of perturbations for minimal loss in test accuracy. Furthermore, we find that Binary Neural Networks (BNNs) and related variants are intrinsically more robust than their full precision counterparts in adversarial scenarios. Combining input discretization with BNNs furthers the robustness even waiving the need for adversarial training for certain magnitude of perturbation values. We evaluate the effect of discretization on MNIST, CIFAR10, CIFAR100 and Imagenet datasets. Across all datasets, we observe maximal adversarial resistance with 2-bit input discretization that incurs an adversarial accuracy loss of just ~1-2% as compared to clean test accuracy.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here