Distributed Deep Joint Source-Channel Coding with Decoder-Only Side Information

6 Oct 2023  ·  Selim F. Yilmaz, Ezgi Ozyilkan, Deniz Gunduz, Elza Erkip ·

We consider low-latency image transmission over a noisy wireless channel when correlated side information is present only at the receiver side (the Wyner-Ziv scenario). In particular, we are interested in developing practical schemes using a data-driven joint source-channel coding (JSCC) approach, which has been previously shown to outperform conventional separation-based approaches in the practical finite blocklength regimes, and to provide graceful degradation with channel quality. We propose a novel neural network architecture that incorporates the decoder-only side information at multiple stages at the receiver side. Our results demonstrate that the proposed method succeeds in integrating the side information, yielding improved performance at all channel conditions in terms of the various quality measures considered here, especially at low channel signal-to-noise ratios (SNRs) and small bandwidth ratios (BRs). We have made the source code of the proposed method public to enable further research, and the reproducibility of the results.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here