Distributed Sensing Along Fibres for Smart Clothing

14 Feb 2024  ·  Brett C. Hannigan, Tyler J. Cuthbert, Chakaveh Ahmadizadeh, Carlo Menon ·

Textile sensors transform our everyday clothing into a means to track movement and bio-signals in a completely unobtrusive way. One major hindrance to the adoption of "smart" clothing is the difficulty encountered with connections and space when scaling up the number of sensors. There is a lack of research addressing a key limitation in wearable electronics: connections between rigid and textile elements are often unreliable and they require interfacing sensors in a way incompatible with textile mass production methods. We introduce a prototype garment, compact readout circuit, and algorithm to measure localized strain along multiple regions of a fibre. We employ a helical auxetic yarn sensor with tunable sensitivity along its length to selectively respond to strain signals. We demonstrate distributed sensing in clothing, monitoring arm joint angles from a single continuous fibre. Compared to optical motion capture, we achieve around 5{\deg} error in reconstructing shoulder, elbow, and wrist joint angles.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here