Domain-adaptive and Subgroup-specific Cascaded Temperature Regression for Out-of-distribution Calibration

14 Feb 2024  ·  Jiexin Wang, Jiahao Chen, Bing Su ·

Although deep neural networks yield high classification accuracy given sufficient training data, their predictions are typically overconfident or under-confident, i.e., the prediction confidences cannot truly reflect the accuracy. Post-hoc calibration tackles this problem by calibrating the prediction confidences without re-training the classification model. However, current approaches assume congruence between test and validation data distributions, limiting their applicability to out-of-distribution scenarios. To this end, we propose a novel meta-set-based cascaded temperature regression method for post-hoc calibration. Our method tailors fine-grained scaling functions to distinct test sets by simulating various domain shifts through data augmentation on the validation set. We partition each meta-set into subgroups based on predicted category and confidence level, capturing diverse uncertainties. A regression network is then trained to derive category-specific and confidence-level-specific scaling, achieving calibration across meta-sets. Extensive experimental results on MNIST, CIFAR-10, and TinyImageNet demonstrate the effectiveness of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here