DuRIN: A Deep-unfolded Sparse Seismic Reflectivity Inversion Network

We consider the reflection seismology problem of recovering the locations of interfaces and the amplitudes of reflection coefficients from seismic data, which are vital for estimating the subsurface structure. The reflectivity inversion problem is typically solved using greedy algorithms and iterative techniques. Sparse Bayesian learning framework, and more recently, deep learning techniques have shown the potential of data-driven approaches to solve the problem. In this paper, we propose a weighted minimax-concave penalty-regularized reflectivity inversion formulation and solve it through a model-based neural network. The network is referred to as deep-unfolded reflectivity inversion network (DuRIN). We demonstrate the efficacy of the proposed approach over the benchmark techniques by testing on synthetic 1-D seismic traces and 2-D wedge models and validation with the simulated 2-D Marmousi2 model and real data from the Penobscot 3D survey off the coast of Nova Scotia, Canada.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here