Dynamic Programming Algorithms for Discovery of Antibiotic Resistance in Microbial Genomes

29 Nov 2023  ·  Manal Helal, Vitali Sintchenko ·

The translation of comparative genomics into clinical decision support tools often depends on the quality of sequence alignments. However, currently used methods of multiple sequence alignments suffer from significant biases and problems with aligning diverged sequences. The objective of this study was to develop and test a new multiple sequence alignment (MSA) algorithm suitable for the high-throughput comparative analysis of different microbial genomes. This algorithm employs an innovative tensor indexing method for partitioning the dynamic programming hyper-cube space for parallel processing. We have used the clinically relevant task of identifying regions that determine resistance to antibiotics to test the new algorithm and to compare its performance with existing MSA methods. The new method "mmDst" performed better than existing MSA algorithms for more divergent sequences because it employs a simultaneous alignment scoring recurrence, which effectively approximated the score for edge missing cell scores that fall outside the scoring region.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here