EEGNN: Edge Enhanced Graph Neural Network with a Bayesian Nonparametric Graph Model

12 Aug 2022  ·  Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam ·

Training deep graph neural networks (GNNs) poses a challenging task, as the performance of GNNs may suffer from the number of hidden message-passing layers. The literature has focused on the proposals of {over-smoothing} and {under-reaching} to explain the performance deterioration of deep GNNs. In this paper, we propose a new explanation for such deteriorated performance phenomenon, {mis-simplification}, that is, mistakenly simplifying graphs by preventing self-loops and forcing edges to be unweighted. We show that such simplifying can reduce the potential of message-passing layers to capture the structural information of graphs. In view of this, we propose a new framework, edge enhanced graph neural network (EEGNN). EEGNN uses the structural information extracted from the proposed Dirichlet mixture Poisson graph model (DMPGM), a Bayesian nonparametric model for graphs, to improve the performance of various deep message-passing GNNs. We propose a Markov chain Monte Carlo inference framework for DMPGM. Experiments over different datasets show that our method achieves considerable performance increase compared to baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods