Effect of discrete breathers on the specific heat of a nonlinear chain

7 Jul 2019  ·  Mohit Singh, Alina Y. Morkina, Elena A. Korznikova, Volodymyr I. Dubinko, Dmitry A. Terentiev, Daxing Xiong, Oleg B. Naimark, Vakhid A. Gani, Sergey V. Dmitriev ·

A nonlinear chain with six-order polynomial on-site potential is used to analyze the evolution of the total to kinetic energy ratio during development of modulational instability of extended nonlinear vibrational modes. For the on-site potential of hard-type (soft-type) anharmonicity, the instability of $q=\pi$ mode ($q=0$ mode) results in the appearance of long-living discrete breathers (DBs) that gradually radiate their energy and eventually the system approaches thermal equilibrium with spatially uniform and temporally constant temperature. In the hard-type (soft-type) anharmonicity case, the total to kinetic energy ratio is minimal (maximal) in the regime of maximal energy localization by DBs. It is concluded that DBs affect specific heat of the nonlinear chain and for the case of hard-type (soft-type) anharmonicity they reduce (increase) the specific heat.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Pattern Formation and Solitons Materials Science Mathematical Physics Mathematical Physics 37Mxx, 65P10, 65P40