Effect of Optimizer, Initializer, and Architecture of Hypernetworks on Continual Learning from Demonstration

31 Dec 2023  ·  Sayantan Auddy, Sebastian Bergner, Justus Piater ·

In continual learning from demonstration (CLfD), a robot learns a sequence of real-world motion skills continually from human demonstrations. Recently, hypernetworks have been successful in solving this problem. In this paper, we perform an exploratory study of the effects of different optimizers, initializers, and network architectures on the continual learning performance of hypernetworks for CLfD. Our results show that adaptive learning rate optimizers work well, but initializers specially designed for hypernetworks offer no advantages for CLfD. We also show that hypernetworks that are capable of stable trajectory predictions are robust to different network architectures. Our open-source code is available at https://github.com/sebastianbergner/ExploringCLFD.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here