Efficient Debiased Evidence Estimation by Multilevel Monte Carlo Sampling

14 Jan 2020  ·  Kei Ishikawa, Takashi Goda ·

In this paper, we propose a new stochastic optimization algorithm for Bayesian inference based on multilevel Monte Carlo (MLMC) methods. In Bayesian statistics, biased estimators of the model evidence have been often used as stochastic objectives because the existing debiasing techniques are computationally costly to apply. To overcome this issue, we apply an MLMC sampling technique to construct low-variance unbiased estimators both for the model evidence and its gradient. In the theoretical analysis, we show that the computational cost required for our proposed MLMC estimator to estimate the model evidence or its gradient with a given accuracy is an order of magnitude smaller than those of the previously known estimators. Our numerical experiments confirm considerable computational savings compared to the conventional estimators. Combining our MLMC estimator with gradient-based stochastic optimization results in a new scalable, efficient, debiased inference algorithm for Bayesian statistical models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here