Efficient exact computation of the conjunctive and disjunctive decompositions of D-S Theory for information fusion: Translation and extension

13 Jul 2021  ·  Maxime Chaveroche, Franck Davoine, Véronique Cherfaoui ·

Dempster-Shafer Theory (DST) generalizes Bayesian probability theory, offering useful additional information, but suffers from a high computational burden. A lot of work has been done to reduce the complexity of computations used in information fusion with Dempster's rule. Yet, few research had been conducted to reduce the complexity of computations for the conjunctive and disjunctive decompositions of evidence, which are at the core of other important methods of information fusion. In this paper, we propose a method designed to exploit the actual evidence (information) contained in these decompositions in order to compute them. It is based on a new notion that we call focal point, derived from the notion of focal set. With it, we are able to reduce these computations up to a linear complexity in the number of focal sets in some cases. In a broader perspective, our formulas have the potential to be tractable when the size of the frame of discernment exceeds a few dozen possible states, contrary to the existing litterature. This article extends (and translates) our work published at the french conference GRETSI in 2019.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here