Efficient Optimal Transport Algorithm by Accelerated Gradient descent

12 Apr 2021  ·  Dongsheng An, Na lei, Xianfeng GU ·

Optimal transport (OT) plays an essential role in various areas like machine learning and deep learning. However, computing discrete optimal transport plan for large scale problems with adequate accuracy and efficiency is still highly challenging. Recently, methods based on the Sinkhorn algorithm add an entropy regularizer to the prime problem and get a trade off between efficiency and accuracy. In this paper, we propose a novel algorithm to further improve the efficiency and accuracy based on Nesterov's smoothing technique. Basically, the non-smooth c-transform of the Kantorovich potential is approximated by the smooth Log-Sum-Exp function, which finally smooths the original non-smooth Kantorovich dual functional (energy). The smooth Kantorovich functional can be optimized by the fast proximal gradient algorithm (FISTA) efficiently. Theoretically, the computational complexity of the proposed method is given by $O(n^{\frac{5}{2}} \sqrt{\log n} /\epsilon)$, which is lower than that of the Sinkhorn algorithm. Empirically, compared with the Sinkhorn algorithm, our experimental results demonstrate that the proposed method achieves faster convergence and better accuracy with the same parameter.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here