Efficient Post-processing of Diffusion Tensor Cardiac Magnetic Imaging Using Texture-conserving Deformable Registration

Diffusion tensor cardiac magnetic resonance (DT-CMR) is a method capable of providing non-invasive measurements of myocardial microstructure. Image registration is essential to correct image shifts due to intra and inter breath-hold motion and imperfect cardiac triggering. Registration is challenging in DT-CMR due to the low signal-to-noise and various contrasts induced by the diffusion encoding in the myocardium and surrounding organs. Traditional deformable registration corrects through-plane motion but at the risk of destroying the texture information while rigid registration inefficiently discards frames with local deformation. In this study, we explored the possibility of deep learning-based deformable registration on DT-CMR. Based on the noise suppression using low-rank features and diffusion encoding suppression using variational auto encoder-decoder, a B-spline based registration network extracted the displacement fields and maintained the texture features of DT-CMR. In this way, our method improved the efficiency of frame utilization, manual cropping, and computational speed.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods