Electromagnon excitation in cupric oxide measured by Fabry-P\'erot enhanced terahertz Mueller matrix ellipsometry

17 Aug 2018  ·  Knight Sean, Prabhakaran Dharmalingam, Binek Christian, Schubert Mathias ·

Here we present the use of Fabry-P\'erot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-P\'erot cavity to resonantly enhance the excitation's signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds to the electromagnon excitation. This absorption peak is observed along only one major polarizability axis in the monoclinic a-c plane. We show the excitation can be represented using the Lorentz oscillator model, and discuss how these Lorentz parameters evolve with temperature. Our findings are in excellent agreement with previous characterizations by THz time-domain spectroscopy (THz-TDS), which demonstrates the validity of this enhancement technique.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Optics Instrumentation and Detectors