Paper

Emotion Recognition under Consideration of the Emotion Component Process Model

Emotion classification in text is typically performed with neural network models which learn to associate linguistic units with emotions. While this often leads to good predictive performance, it does only help to a limited degree to understand how emotions are communicated in various domains. The emotion component process model (CPM) by Scherer (2005) is an interesting approach to explain emotion communication. It states that emotions are a coordinated process of various subcomponents, in reaction to an event, namely the subjective feeling, the cognitive appraisal, the expression, a physiological bodily reaction, and a motivational action tendency. We hypothesize that these components are associated with linguistic realizations: an emotion can be expressed by describing a physiological bodily reaction ("he was trembling"), or the expression ("she smiled"), etc. We annotate existing literature and Twitter emotion corpora with emotion component classes and find that emotions on Twitter are predominantly expressed by event descriptions or subjective reports of the feeling, while in literature, authors prefer to describe what characters do, and leave the interpretation to the reader. We further include the CPM in a multitask learning model and find that this supports the emotion categorization. The annotated corpora are available at https://www.ims.uni-stuttgart.de/data/emotion.

Results in Papers With Code
(↓ scroll down to see all results)