Energy-Aware Graph Task Scheduling in Software-Defined Air-Ground Integrated Vehicular Networks

3 Aug 2020  ·  Minghui LiWang, Zhibin Gao, Xianbin Wang ·

The Software-Defined Air-Ground integrated Vehicular (SD-AGV) networks have emerged as a promising paradigm, which realize the flexible on-ground resource sharing to support innovative applications for UAVs with heavy computational overhead. In this paper, we investigate a vehicular cloud-assisted task scheduling problem in SD-AGV networks, where the computation-intensive tasks carried by UAVs, and the vehicular cloud are modeled via graph-based representation. To map each component of the graph tasks to a feasible vehicle, while achieving the trade-off among minimizing UAVs' task completion time, energy consumption, and the data exchange cost among moving vehicles, we formulate the problem as a mixed-integer non-linear programming problem, which is Np-hard. Moreover, the constraint associated with preserving task structures poses addressing the subgraph isomorphism problem over dynamic vehicular topology, that further complicates the algorithm design. Motivated by which, we propose an efficient decoupled approach by separating the template (feasible mappings between components and vehicles) searching from the transmission power allocation. For the former, we present an efficient algorithm of searching for all the isomorphic subgraphs with low computation complexity. For the latter, we introduce a power allocation algorithm by applying $p$-norm and convex optimization techniques. Extensive simulations demonstrate that the proposed approach outperforms the benchmark methods considering various problem sizes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here