Energy-Efficient Real-Time Heart Monitoring on Edge-Fog-Cloud Internet-of-Medical-Things

15 Dec 2021  ·  Berken Utku Demirel, Islam Abdelsalam Bayoumy, Mohammad Abdullah Al Faruque ·

The recent developments in wearable devices and the Internet of Medical Things (IoMT) allow real-time monitoring and recording of electrocardiogram (ECG) signals. However, continuous monitoring of ECG signals is challenging in low-power wearable devices due to energy and memory constraints. Therefore, in this paper, we present a novel and energy-efficient methodology for continuously monitoring the heart for low-power wearable devices. The proposed methodology is composed of three different layers: 1) a Noise/Artifact detection layer to grade the quality of the ECG signals; 2) a Normal/Abnormal beat classification layer to detect the anomalies in the ECG signals, and 3) an Abnormal beat classification layer to detect diseases from ECG signals. Moreover, a distributed multi-output Convolutional Neural Network (CNN) architecture is used to decrease the energy consumption and latency between the edge-fog/cloud. Our methodology reaches an accuracy of 99.2% on the well-known MIT-BIH Arrhythmia dataset. Evaluation on real hardware shows that our methodology is suitable for devices having a minimum RAM of 32KB. Moreover, the proposed methodology achieves $7\times$ more energy efficiency compared to state-of-the-art works.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods