Engineering of Quantum State by Time-Dependent Decoherence-Free Subspaces

27 Feb 2015  ·  Wu S. L. ·

We apply the time-dependent decoherence-free subspace theory to a Markovian open quantum system in order to present a novel proposal for quantum-state engineering program. By quantifying the purity of the quantum state, we verify that the quantum-state engineering process designed via our method is completely unitary within any total engineering time. Even though the controls on the open quantum system are not perfect, the asymptotic purity is still robust. Owing to its ability to completely resist decoherence and the lack of restraint in terms of the total engineering time, our proposal is suitable for multitask quantum-state engineering program. Therefore, this proposal is not only useful for achieving the quantum-state engineering program experimentally, it also helps us build both a quantum simulation and quantum information equipment in reality.

PDF Abstract
No code implementations yet. Submit your code now


Quantum Physics