EventNet: Asynchronous Recursive Event Processing

CVPR 2019  ·  Yusuke Sekikawa, Kosuke Hara, Hideo Saito ·

Event cameras are bio-inspired vision sensors that mimic retinas to asynchronously report per-pixel intensity changes rather than outputting an actual intensity image at regular intervals. This new paradigm of image sensor offers significant potential advantages; namely, sparse and non-redundant data representation. Unfortunately, however, most of the existing artificial neural network architectures, such as a CNN, require dense synchronous input data, and therefore, cannot make use of the sparseness of the data. We propose EventNet, a neural network designed for real-time processing of asynchronous event streams in a recursive and event-wise manner. EventNet models dependence of the output on tens of thousands of causal events recursively using a novel temporal coding scheme. As a result, at inference time, our network operates in an event-wise manner that is realized with very few sum-of-the-product operations---look-up table and temporal feature aggregation---which enables processing of 1 mega or more events per second on standard CPU. In experiments using real data, we demonstrated the real-time performance and robustness of our framework.

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here