Explainable Graph Neural Networks for Observation Impact Analysis in Atmospheric State Estimation

26 Mar 2024  ·  Hyeon-Ju Jeon, Jeon-Ho Kang, In-Hyuk Kwon, O-Joun Lee ·

This paper investigates the impact of observations on atmospheric state estimation in weather forecasting systems using graph neural networks (GNNs) and explainability methods. We integrate observation and Numerical Weather Prediction (NWP) points into a meteorological graph, extracting $k$-hop subgraphs centered on NWP points. Self-supervised GNNs are employed to estimate the atmospheric state by aggregating data within these $k$-hop radii. The study applies gradient-based explainability methods to quantify the significance of different observations in the estimation process. Evaluated with data from 11 satellite and land-based observations, the results highlight the effectiveness of visualizing the importance of observation types, enhancing the understanding and optimization of observational data in weather forecasting.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here