Exploiting Multi-layer Graph Factorization for Multi-attributed Graph Matching

24 Apr 2017  ·  Han-Mu Park, Kuk-Jin Yoon ·

Multi-attributed graph matching is a problem of finding correspondences between two sets of data while considering their complex properties described in multiple attributes. However, the information of multiple attributes is likely to be oversimplified during a process that makes an integrated attribute, and this degrades the matching accuracy. For that reason, a multi-layer graph structure-based algorithm has been proposed recently. It can effectively avoid the problem by separating attributes into multiple layers. Nonetheless, there are several remaining issues such as a scalability problem caused by the huge matrix to describe the multi-layer structure and a back-projection problem caused by the continuous relaxation of the quadratic assignment problem. In this work, we propose a novel multi-attributed graph matching algorithm based on the multi-layer graph factorization. We reformulate the problem to be solved with several small matrices that are obtained by factorizing the multi-layer structure. Then, we solve the problem using a convex-concave relaxation procedure for the multi-layer structure. The proposed algorithm exhibits better performance than state-of-the-art algorithms based on the single-layer structure.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here