Exploration of lattice Hamiltonians for functional and structural discovery via Gaussian Process-based Exploration-Exploitation

9 Apr 2020  ·  Sergei V. Kalinin, Mani Valleti, Rama K. Vasudevan, Maxim Ziatdinov ·

Statistical physics models ranging from simple lattice to complex quantum Hamiltonians are one of the mainstays of modern physics, that have allowed both decades of scientific discovery and provided a universal framework to understand a broad range of phenomena from alloying to frustrated and phase-separated materials to quantum systems. Traditionally, exploration of the phase diagrams corresponding to multidimensional parameter spaces of Hamiltonians was performed using a combination of basic physical principles, analytical approximations, and extensive numerical modeling. However, exploration of complex multidimensional parameter spaces is subject to the classic dimensionality problem, and the behaviors of interest concentrated on low dimensional manifolds can remain undiscovered. Here, we demonstrate that a combination of exploration and exploration-exploitation with Gaussian process modeling and Bayesian optimization allows effective exploration of the parameter space for lattice Hamiltonians, and effectively maps the regions at which specific macroscopic functionalities or local structures are maximized. We argue that this approach is general and can be further extended well beyond the lattice Hamiltonians to effectively explore parameter space of more complex off-lattice and dynamic models.

PDF Abstract


Materials Science Computational Physics