LIBRA: Enabling Workload-aware Multi-dimensional Network Topology Optimization for Distributed Training of Large AI Models

24 Sep 2021  ·  William Won, Saeed Rashidi, Sudarshan Srinivasan, Tushar Krishna ·

As model sizes in machine learning continue to scale, distributed training is necessary to accommodate model weights within each device and to reduce training time. However, this comes with the expense of increased communication overhead due to the exchange of gradients and activations, which become the critical bottleneck of the end-to-end training process. In this work, we motivate the design of multi-dimensional networks within machine learning systems as a cost-efficient mechanism to enhance overall network bandwidth. We also identify that optimal bandwidth allocation is pivotal for multi-dimensional networks to ensure efficient resource utilization. We introduce LIBRA, a framework specifically focused on optimizing multi-dimensional fabric architectures. Through case studies, we demonstrate the value of LIBRA, both in architecting optimized fabrics under diverse constraints and in enabling co-optimization opportunities.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here