Extending the step-size restriction for gradient descent to avoid strict saddle points

5 Aug 2019  ·  Hayden Schaeffer, Scott G. McCalla ·

We provide larger step-size restrictions for which gradient descent based algorithms (almost surely) avoid strict saddle points. In particular, consider a twice differentiable (non-convex) objective function whose gradient has Lipschitz constant L and whose Hessian is well-behaved. We prove that the probability of initial conditions for gradient descent with step-size up to 2/L converging to a strict saddle point, given one uniformly random initialization, is zero. This extends previous results up to the sharp limit imposed by the convex case. In addition, the arguments hold in the case when a learning rate schedule is given, with either a continuous decaying rate or a piece-wise constant schedule.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here