Extreme Algorithm Selection With Dyadic Feature Representation

29 Jan 2020  ·  Alexander Tornede, Marcel Wever, Eyke Hüllermeier ·

Algorithm selection (AS) deals with selecting an algorithm from a fixed set of candidate algorithms most suitable for a specific instance of an algorithmic problem, e.g., choosing solvers for SAT problems. Benchmark suites for AS usually comprise candidate sets consisting of at most tens of algorithms, whereas in combined algorithm selection and hyperparameter optimization problems the number of candidates becomes intractable, impeding to learn effective meta-models and thus requiring costly online performance evaluations. Therefore, here we propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms, facilitating meta learning. We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation in which both problem instances and algorithms are described. We find the latter to improve significantly over the current state of the art in various metrics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here