Extreme-Quality Computational Imaging via Degradation Framework

To meet the space limitation of optical elements, free-form surfaces or high-order aspherical lenses are adopted in mobile cameras to compress volume. However, the application of free-form surfaces also introduces the problem of image quality mutation. Existing model-based deconvolution methods are inefficient in dealing with the degradation that shows a wide range of spatial variants over regions. And the deep learning techniques in low-level and physics-based vision suffer from a lack of accurate data. To address this issue, we develop a degradation framework to estimate the spatially variant point spread functions (PSFs) of mobile cameras. When input extreme-quality digital images, the proposed framework generates degraded images sharing a common domain with real-world photographs. Supplied with the synthetic image pairs, we design a Field-Of-View shared kernel prediction network (FOV-KPN) to perform spatial-adaptive reconstruction on real degraded photos. Extensive experiments demonstrate that the proposed approach achieves extreme-quality computational imaging and outperforms the state-of-the-art methods. Furthermore, we illustrate that our technique can be integrated into existing postprocessing systems, resulting in significantly improved visual quality.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here