F^2-Softmax: Diversifying Neural Text Generation via Frequency Factorized Softmax

20 Sep 2020  ·  Byung-Ju Choi, Jimin Hong, David Keetae Park, Sang Wan Lee ·

Despite recent advances in neural text generation, encoding the rich diversity in human language remains elusive. We argue that the sub-optimal text generation is mainly attributable to the imbalanced token distribution, which particularly misdirects the learning model when trained with the maximum-likelihood objective. As a simple yet effective remedy, we propose two novel methods, F^2-Softmax and MefMax, for a balanced training even with the skewed frequency distribution. MefMax assigns tokens uniquely to frequency classes, trying to group tokens with similar frequencies and equalize frequency mass between the classes. F^2-Softmax then decomposes a probability distribution of the target token into a product of two conditional probabilities of (i) frequency class, and (ii) token from the target frequency class. Models learn more uniform probability distributions because they are confined to subsets of vocabularies. Significant performance gains on seven relevant metrics suggest the supremacy of our approach in improving not only the diversity but also the quality of generated texts.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here