Finite Dimensional Koopman Form of Polynomial Nonlinear Systems

16 Jan 2023  ·  Lucian Cristian Iacob, Maarten Schoukens, Roland Tóth ·

The Koopman framework is a popular approach to transform a finite dimensional nonlinear system into an infinite dimensional, but linear model through a lifting process, using so-called observable functions. While there is an extensive theory on infinite dimensional representations in the operator sense, there are few constructive results on how to select the observables to realize them. When it comes to the possibility of finite Koopman representations, which are highly important form a practical point of view, there is no constructive theory. Hence, in practice, often a data-based method and ad-hoc choice of the observable functions is used. When truncating to a finite number of basis, there is also no clear indication of the introduced approximation error. In this paper, we propose a systematic method to compute the finite dimensional Koopman embedding of a specific class of polynomial nonlinear systems in continuous-time such that, the embedding, without approximation, can fully represent the dynamics of the nonlinear system.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here