Finite-time analysis of single-timescale actor-critic

NeurIPS 2023  ·  Xuyang Chen, Lin Zhao ·

Actor-critic methods have achieved significant success in many challenging applications. However, its finite-time convergence is still poorly understood in the most practical single-timescale form. Existing works on analyzing single-timescale actor-critic have been limited to i.i.d. sampling or tabular setting for simplicity. We investigate the more practical online single-timescale actor-critic algorithm on continuous state space, where the critic assumes linear function approximation and updates with a single Markovian sample per actor step. Previous analysis has been unable to establish the convergence for such a challenging scenario. We demonstrate that the online single-timescale actor-critic method provably finds an $\epsilon$-approximate stationary point with $\widetilde{\mathcal{O}}(\epsilon^{-2})$ sample complexity under standard assumptions, which can be further improved to $\mathcal{O}(\epsilon^{-2})$ under the i.i.d. sampling. Our novel framework systematically evaluates and controls the error propagation between the actor and critic. It offers a promising approach for analyzing other single-timescale reinforcement learning algorithms as well.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here