Finite-time Safety and Reach-avoid Verification of Stochastic Discrete-time Systems

28 Apr 2024  ·  Bai Xue ·

This paper studies finite-time safety and reach-avoid verification for stochastic discrete-time dynamical systems. The aim is to ascertain lower and upper bounds of the probability that, within a predefined finite-time horizon, a system starting from an initial state in a safe set will either exit the safe set (safety verification) or reach a target set while remaining within the safe set until the first encounter with the target (reach-avoid verification). We introduce novel barrier-like sufficient conditions for characterizing these bounds, which either complement existing ones or fill gaps. Finally, we demonstrate the efficacy of these conditions on two examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here