Free-fall velocities and heat transport enhancement in liquid metal magneto-convection

7 Dec 2020  ·  Tobias Vogt, Juancheng Yang, Felix Schindler, Sven Eckert ·

In geo- and astrophysics, low Prandtl number convective flows often interact with magnetic fields. Although a static magnetic field acts as a stabilizing force on such flow fields, we find that self-organized convective flow structures reach an optimal state where the heat transport significantly increases and convective velocities reach the theoretical free-fall limit, i.e. the maximum possible velocity a fluid parcel can achieve when its potential buoyant energy is fully converted into kinetic energy. Our measurements show that the application of a static magnetic field leads to an anisotropic, highly ordered flow structure and a decrease of the turbulent fluctuations. When the magnetic field strength is increased beyond the optimum, Hartmann braking becomes dominant and leads to a reduction of the heat and momentum transport. The results are relevant for the understanding of magneto-hydrodynamic convective flows in planetary cores and stellar interiors in regions with strong toroidal magnetic fields oriented perpendicular to temperature gradients.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Fluid Dynamics