FRRffusion: Unveiling Authenticity with Diffusion-Based Face Retouching Reversal

13 May 2024  ·  Fengchuang Xing, Xiaowen Shi, Yuan-Gen Wang, Chunsheng Yang ·

Unveiling the real appearance of retouched faces to prevent malicious users from deceptive advertising and economic fraud has been an increasing concern in the era of digital economics. This article makes the first attempt to investigate the face retouching reversal (FRR) problem. We first collect an FRR dataset, named deepFRR, which contains 50,000 StyleGAN-generated high-resolution (1024*1024) facial images and their corresponding retouched ones by a commercial online API. To our best knowledge, deepFRR is the first FRR dataset tailored for training the deep FRR models. Then, we propose a novel diffusion-based FRR approach (FRRffusion) for the FRR task. Our FRRffusion consists of a coarse-to-fine two-stage network: A diffusion-based Facial Morpho-Architectonic Restorer (FMAR) is constructed to generate the basic contours of low-resolution faces in the first stage, while a Transformer-based Hyperrealistic Facial Detail Generator (HFDG) is designed to create high-resolution facial details in the second stage. Tested on deepFRR, our FRRffusion surpasses the GP-UNIT and Stable Diffusion methods by a large margin in four widespread quantitative metrics. Especially, the de-retouched images by our FRRffusion are visually much closer to the raw face images than both the retouched face images and those restored by the GP-UNIT and Stable Diffusion methods in terms of qualitative evaluation with 85 subjects. These results sufficiently validate the efficacy of our work, bridging the recently-standing gap between the FRR and generic image restoration tasks. The dataset and code are available at https://github.com/GZHU-DVL/FRRffusion.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods