Generalization Error Bounds for Noisy, Iterative Algorithms

12 Jan 2018  ·  Ankit Pensia, Varun Jog, Po-Ling Loh ·

In statistical learning theory, generalization error is used to quantify the degree to which a supervised machine learning algorithm may overfit to training data. Recent work [Xu and Raginsky (2017)] has established a bound on the generalization error of empirical risk minimization based on the mutual information $I(S;W)$ between the algorithm input $S$ and the algorithm output $W$, when the loss function is sub-Gaussian. We leverage these results to derive generalization error bounds for a broad class of iterative algorithms that are characterized by bounded, noisy updates with Markovian structure. Our bounds are very general and are applicable to numerous settings of interest, including stochastic gradient Langevin dynamics (SGLD) and variants of the stochastic gradient Hamiltonian Monte Carlo (SGHMC) algorithm. Furthermore, our error bounds hold for any output function computed over the path of iterates, including the last iterate of the algorithm or the average of subsets of iterates, and also allow for non-uniform sampling of data in successive updates of the algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here