Generalized Forgetting Recursive Least Squares: Stability and Robustness Guarantees

8 Aug 2023  ·  Brian Lai, Dennis S. Bernstein ·

This work presents generalized forgetting recursive least squares (GF-RLS), a generalization of recursive least squares (RLS) that encompasses many extensions of RLS as special cases. First, sufficient conditions are presented for the 1) Lyapunov stability, 2) uniform Lyapunov stability, 3) global asymptotic stability, and 4) global uniform exponential stability of parameter estimation error in GF-RLS when estimating fixed parameters without noise. Second, robustness guarantees are derived for the estimation of time-varying parameters in the presence of measurement noise and regressor noise. These robustness guarantees are presented in terms of global uniform ultimate boundedness of the parameter estimation error. A specialization of this result gives a bound to the asymptotic bias of least squares estimators in the errors-in-variables problem. Lastly, a survey is presented to show how GF-RLS can be used to analyze various extensions of RLS from the literature.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here