Geometric structure of graph Laplacian embeddings

30 Jan 2019  ·  Nicolas Garcia Trillos, Franca Hoffmann, Bamdad Hosseini ·

We analyze the spectral clustering procedure for identifying coarse structure in a data set $x_1, \dots, x_n$, and in particular study the geometry of graph Laplacian embeddings which form the basis for spectral clustering algorithms. More precisely, we assume that the data is sampled from a mixture model supported on a manifold $\mathcal{M}$ embedded in $\mathbb{R}^d$, and pick a connectivity length-scale $\varepsilon>0$ to construct a kernelized graph Laplacian. We introduce a notion of a well-separated mixture model which only depends on the model itself, and prove that when the model is well separated, with high probability the embedded data set concentrates on cones that are centered around orthogonal vectors. Our results are meaningful in the regime where $\varepsilon = \varepsilon(n)$ is allowed to decay to zero at a slow enough rate as the number of data points grows. This rate depends on the intrinsic dimension of the manifold on which the data is supported.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods