Global Model Interpretation via Recursive Partitioning

11 Feb 2018  ·  Chengliang Yang, Anand Rangarajan, Sanjay Ranka ·

In this work, we propose a simple but effective method to interpret black-box machine learning models globally. That is, we use a compact binary tree, the interpretation tree, to explicitly represent the most important decision rules that are implicitly contained in the black-box machine learning models. This tree is learned from the contribution matrix which consists of the contributions of input variables to predicted scores for each single prediction. To generate the interpretation tree, a unified process recursively partitions the input variable space by maximizing the difference in the average contribution of the split variable between the divided spaces. We demonstrate the effectiveness of our method in diagnosing machine learning models on multiple tasks. Also, it is useful for new knowledge discovery as such insights are not easily identifiable when only looking at single predictions. In general, our work makes it easier and more efficient for human beings to understand machine learning models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here