GoT-WAVE: Temporal network alignment using graphlet-orbit transitions

24 Aug 2018  ·  David Aparício, Pedro Ribeiro, Tijana Milenković, Fernando Silva ·

Global pairwise network alignment (GPNA) aims to find a one-to-one node mapping between two networks that identifies conserved network regions. GPNA algorithms optimize node conservation (NC) and edge conservation (EC). NC quantifies topological similarity between nodes. Graphlet-based degree vectors (GDVs) are a state-of-the-art topological NC measure. Dynamic GDVs (DGDVs) were used as a dynamic NC measure within the first-ever algorithms for GPNA of temporal networks: DynaMAGNA++ and DynaWAVE. The latter is superior for larger networks. We recently developed a different graphlet-based measure of temporal node similarity, graphlet-orbit transitions (GoTs). Here, we use GoTs instead of DGDVs as a new dynamic NC measure within DynaWAVE, resulting in a new approach, GoT-WAVE. On synthetic networks, GoT-WAVE improves DynaWAVE's accuracy by 25% and speed by 64%. On real networks, when optimizing only dynamic NC, each method is superior ~50% of the time. While DynaWAVE benefits more from also optimizing dynamic EC, only GoT-WAVE can support directed edges. Hence, GoT-WAVE is a promising new temporal GPNA algorithm, which efficiently optimizes dynamic NC. Future work on better incorporating dynamic EC may yield further improvements.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here