GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data

11 Nov 2022  ·  Andrei Margeloiu, Nikola Simidjievski, Pietro Lio, Mateja Jamnik ·

Neural network models often struggle with high-dimensional but small sample-size tabular datasets. One reason is that current weight initialisation methods assume independence between weights, which can be problematic when there are insufficient samples to estimate the model's parameters accurately. In such small data scenarios, leveraging additional structures can improve the model's performance and training stability. To address this, we propose GCondNet, a general approach to enhance neural networks by leveraging implicit structures present in tabular data. We create a graph between samples for each data dimension, and utilise Graph Neural Networks (GNNs) for extracting this implicit structure, and for conditioning the parameters of the first layer of an underlying predictor network. By creating many small graphs, GCondNet exploits the data's high-dimensionality, and thus improves the performance of an underlying predictor network. We demonstrate the effectiveness of our method on 9 real-world datasets, where GCondNet outperforms 15 standard and state-of-the-art methods. The results show that GCondNet is a versatile framework for injecting graph-regularisation into various types of neural networks, including MLPs and tabular Transformers.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here