Scalable Graph Neural Network-based framework for identifying critical nodes and links in Complex Networks

26 Dec 2020  ·  Sai Munikoti, Laya Das, Balasubramaniam Natarajan ·

Identifying critical nodes and links in graphs is a crucial task. These nodes/links typically represent critical elements/communication links that play a key role in a system's performance. However, a majority of the methods available in the literature on the identification of critical nodes/links are based on an iterative approach that explores each node/link of a graph at a time, repeating for all nodes/links in the graph. Such methods suffer from high computational complexity and the resulting analysis is also network-specific. To overcome these challenges, this article proposes a scalable and generic graph neural network (GNN) based framework for identifying critical nodes/links in large complex networks. The proposed framework defines a GNN based model that learns the node/link criticality score on a small representative subset of nodes/links. An appropriately trained model can be employed to predict the scores of unseen nodes/links in large graphs and consequently identify the most critical ones. The scalability of the framework is demonstrated through prediction of nodes/links scores in large scale synthetic and real-world networks. The proposed approach is fairly accurate in approximating the criticality scores and offers a significant computational advantage over conventional approaches.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods