Graph Convolutional Neural Networks Sensitivity under Probabilistic Error Model

15 Mar 2022  ·  Xinjue Wang, Esa Ollila, Sergiy A. Vorobyov ·

Graph Neural Networks (GNNs), particularly Graph Convolutional Neural Networks (GCNNs), have emerged as pivotal instruments in machine learning and signal processing for processing graph-structured data. This paper proposes an analysis framework to investigate the sensitivity of GCNNs to probabilistic graph perturbations, directly impacting the graph shift operator (GSO). Our study establishes tight expected GSO error bounds, which are explicitly linked to the error model parameters, and reveals a linear relationship between GSO perturbations and the resulting output differences at each layer of GCNNs. This linearity demonstrates that a single-layer GCNN maintains stability under graph edge perturbations, provided that the GSO errors remain bounded, regardless of the perturbation scale. For multilayer GCNNs, the dependency of system's output difference on GSO perturbations is shown to be a recursion of linearity. Finally, we exemplify the framework with the Graph Isomorphism Network (GIN) and Simple Graph Convolution Network (SGCN). Experiments validate our theoretical derivations and the effectiveness of our approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods