Gravitational-wave modes from precessing black-hole binaries

15 Sep 2014  ·  Michael Boyle, Lawrence E. Kidder, Serguei Ossokine, Harald P. Pfeiffer ·

Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a method to simplify the expressions for waveforms given in analytical relativity, which can be used to combine existing high-order waveforms for nonprecessing systems with expressions for the precessing contributions, leading to improved accuracy and a unified treatment of precessing and nonprecessing binaries. Using this method, it is possible to clarify the nature and the origins of the asymmetries and show the effects of asymmetry on recoils more clearly. We present post-Newtonian (PN) expressions for the waveform modes that include these terms, complete to the relative 2PN level in spin (proportional to $v^4/c^4$ times a certain combination of the spins). Comparing the results of those expressions to numerical results, we find good qualitative agreement. We also demonstrate how these expressions can be used to efficiently calculate waveforms for gravitational-wave astronomy.

PDF Abstract

Categories


General Relativity and Quantum Cosmology