Greedy Optimization of Electrode Arrangement for Epiretinal Prostheses

4 Mar 2022  ·  Ashley Bruce, Michael Beyeler ·

Visual neuroprostheses are the only FDA-approved technology for the treatment of retinal degenerative blindness. Although recent work has demonstrated a systematic relationship between electrode location and the shape of the elicited visual percept, this knowledge has yet to be incorporated into retinal prosthesis design, where electrodes are typically arranged on either a rectangular or hexagonal grid. Here we optimize the intraocular placement of epiretinal electrodes using dictionary learning. Importantly, the optimization process is informed by a previously established and psychophysically validated model of simulated prosthetic vision. We systematically evaluate three different electrode placement strategies across a wide range of possible phosphene shapes and recommend electrode arrangements that maximize visual subfield coverage. In the near future, our work may guide the prototyping of next-generation neuroprostheses.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here