Paper

Graph Generation with $K^2$-trees

Generating graphs from a target distribution is a significant challenge across many domains, including drug discovery and social network analysis. In this work, we introduce a novel graph generation method leveraging $K^2$-tree representation, originally designed for lossless graph compression. The $K^2$-tree representation {encompasses inherent hierarchy while enabling compact graph generation}. In addition, we make contributions by (1) presenting a sequential $K^2$-treerepresentation that incorporates pruning, flattening, and tokenization processes and (2) introducing a Transformer-based architecture designed to generate the sequence by incorporating a specialized tree positional encoding scheme. Finally, we extensively evaluate our algorithm on four general and two molecular graph datasets to confirm its superiority for graph generation.

Results in Papers With Code
(↓ scroll down to see all results)