Certifying position-momentum entanglement at telecommunication wavelengths

15 Dec 2020  ·  Lukas Achatz, Evelyn Ortega, Krishna Dovzhik, Rodrigo F. Shiozaki, Jorge Fuenzalida, Sören Wengerowsky, Martin Bohmann, Rupert Ursin ·

TheThe successful employment of high-dimensional quantum correlations and its integration in telecommunication infrastructures is vital in cutting-edge quantum technologies for increasing robustness and key generation rate. Position-momentum Einstein-Podolsky-Rosen (EPR) entanglement of photon pairs are a promising resource of such high-dimensional quantum correlations. Here, we experimentally certify EPR correlations of photon pairs generated by spontaneous parametric down-conversion (SPDC) in a nonlinear crystal with type-0 phase-matching at telecommunication wavelength for the first time. To experimentally observe EPR entanglement, we perform scanning measurements in the near- and far-field planes of the signal and idler modes. We certify EPR correlations with high statistical significance of up to 45 standard deviations. Furthermore, we determine the entanglement of formation of our source to be greater than one, indicating a dimensionality of greater than 2. Operating at telecommunication wavelengths around 1550 nm, our source is compatible with today's deployed telecommunication infrastructure, thus paving the way for integrating sources of high-dimensional entanglement into quantum-communication infrastructures.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Optics