Distributed Machine Learning in D2D-Enabled Heterogeneous Networks: Architectures, Performance, and Open Challenges

4 Jun 2022  ·  Zhipeng Cheng, Xuwei Fan, Minghui LiWang, Ning Chen, Xiaoyu Xia, Xianbin Wang ·

The ever-growing concerns regarding data privacy have led to a paradigm shift in machine learning (ML) architectures from centralized to distributed approaches, giving rise to federated learning (FL) and split learning (SL) as the two predominant privacy-preserving ML mechanisms. However,implementing FL or SL in device-to-device (D2D)-enabled heterogeneous networks with diverse clients presents substantial challenges, including architecture scalability and prolonged training delays. To address these challenges, this article introduces two innovative hybrid distributed ML architectures, namely, hybrid split FL (HSFL) and hybrid federated SL (HFSL). Such architectures combine the strengths of both FL and SL in D2D-enabled heterogeneous wireless networks. We provide a comprehensive analysis of the performance and advantages of HSFL and HFSL, while also highlighting open challenges for future exploration. We support our proposals with preliminary simulations using three datasets in non-independent and non-identically distributed settings, demonstrating the feasibility of our architectures. Our simulations reveal notable reductions in communication/computation costs and training delays as compared to conventional FL and SL.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here