Hybrid-Task Meta-Learning: A Graph Neural Network Approach for Scalable and Transferable Bandwidth Allocation

23 Dec 2023  ·  Xin Hao, Changyang She, Phee Lep Yeoh, Yuhong Liu, Branka Vucetic, Yonghui Li ·

In this paper, we develop a deep learning-based bandwidth allocation policy that is: 1) scalable with the number of users and 2) transferable to different communication scenarios, such as non-stationary wireless channels, different quality-of-service (QoS) requirements, and dynamically available resources. To support scalability, the bandwidth allocation policy is represented by a graph neural network (GNN), with which the number of training parameters does not change with the number of users. To enable the generalization of the GNN, we develop a hybrid-task meta-learning (HML) algorithm that trains the initial parameters of the GNN with different communication scenarios during meta-training. Next, during meta-testing, a few samples are used to fine-tune the GNN with unseen communication scenarios. Simulation results demonstrate that our HML approach can improve the initial performance by $8.79\%$, and sampling efficiency by $73\%$, compared with existing benchmarks. After fine-tuning, our near-optimal GNN-based policy can achieve close to the same reward with much lower inference complexity compared to the optimal policy obtained using iterative optimization.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods