HydaLearn: Highly Dynamic Task Weighting for Multi-task Learning with Auxiliary Tasks

26 Aug 2020  ·  Sam Verboven, Muhammad Hafeez Chaudhary, Jeroen Berrevoets, Wouter Verbeke ·

Multi-task learning (MTL) can improve performance on a task by sharing representations with one or more related auxiliary-tasks. Usually, MTL-networks are trained on a composite loss function formed by a constant weighted combination of the separate task losses. In practice, constant loss weights lead to poor results for two reasons: (i) the relevance of the auxiliary tasks can gradually drift throughout the learning process; (ii) for mini-batch based optimisation, the optimal task weights vary significantly from one update to the next depending on mini-batch sample composition. We introduce HydaLearn, an intelligent weighting algorithm that connects main-task gain to the individual task gradients, in order to inform dynamic loss weighting at the mini-batch level, addressing i and ii. Using HydaLearn, we report performance increases on synthetic data, as well as on two supervised learning domains.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here