Image Collage on Arbitrary Shape via Shape-Aware Slicing and Optimization

17 Nov 2023  ·  Dong-Yi Wu, Thi-Ngoc-Hanh Le, Sheng-Yi Yao, Yun-Chen Lin, Tong-Yee Lee ·

Image collage is a very useful tool for visualizing an image collection. Most of the existing methods and commercial applications for generating image collages are designed on simple shapes, such as rectangular and circular layouts. This greatly limits the use of image collages in some artistic and creative settings. Although there are some methods that can generate irregularly-shaped image collages, they often suffer from severe image overlapping and excessive blank space. This prevents such methods from being effective information communication tools. In this paper, we present a shape slicing algorithm and an optimization scheme that can create image collages of arbitrary shapes in an informative and visually pleasing manner given an input shape and an image collection. To overcome the challenge of irregular shapes, we propose a novel algorithm, called Shape-Aware Slicing, which partitions the input shape into cells based on medial axis and binary slicing tree. Shape-Aware Slicing, which is designed specifically for irregular shapes, takes human perception and shape structure into account to generate visually pleasing partitions. Then, the layout is optimized by analyzing input images with the goal of maximizing the total salient regions of the images. To evaluate our method, we conduct extensive experiments and compare our results against previous work. The evaluations show that our proposed algorithm can efficiently arrange image collections on irregular shapes and create visually superior results than prior work and existing commercial tools.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here