Sign-RIP: A Robust Restricted Isometry Property for Low-rank Matrix Recovery

5 Feb 2021  ·  Jianhao Ma, Salar Fattahi ·

Restricted isometry property (RIP), essentially stating that the linear measurements are approximately norm-preserving, plays a crucial role in studying low-rank matrix recovery problem. However, RIP fails in the robust setting, when a subset of the measurements are grossly corrupted with noise. In this work, we propose a robust restricted isometry property, called Sign-RIP, and show its broad applications in robust low-rank matrix recovery. In particular, we show that Sign-RIP can guarantee the uniform convergence of the subdifferentials of the robust matrix recovery with nonsmooth loss function, even at the presence of arbitrarily dense and arbitrarily large outliers. Based on Sign-RIP, we characterize the location of the critical points in the robust rank-1 matrix recovery, and prove that they are either close to the true solution, or have small norm. Moreover, in the over-parameterized regime, where the rank of the true solution is over-estimated, we show that subgradient method converges to the true solution at a (nearly) dimension-free rate. Finally, we show that sign-RIP enjoys almost the same complexity as its classical counterparts, but provides significantly better robustness against noise.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here